
In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

Supplementary Material

Mark J Dayel1 Orkun Akin2 Mark Landeryou3

Viviana I Risca4 Alex Mogilner5 R. Dyche Mullins6

Note: Figures S1–S12 contain movies and 3D models that require a recent version of Adobe Acrobat and Quicktime to view
(click on the movies to play and the 3D figures to rotate, zoom etc.).

Contents
S1 Model parameter names 2

S2 Supplemental Movies 2

S3 3D reconstructions of beads 6

S4 Model Robustness 12
S4.1 Increasing Radius produces pulsatile motion . 12
S4.2 Shell thickness . 12
S4.3 Shell Flatness . 12
S4.4 Pulsatile motion with no bead-network friction . 12

S5 Outline of the Model 24

S6 Installing the program 25
S6.1 Compiling from source . 25

S7 Running the program 25
S7.1 Command line syntax . 25
S7.2 The cometparams.ini parameter control file . 25

S8 Implementation in C++ 27

S9 Relation of the model assumptions to theories of and data on actin dynamics 29

1Miller Institute for Basic Research in Science, University of California Berkeley
2Department of Cellular and Molecular Pharmacology, University of California San Francisco
3Department of Mechanical Engineering, University College London
4Biophysics Graduate Group, University of California, Berkeley
5Departments of NPB and Mathematics, University of California Davis
6Department of Cellular and Molecular Pharmacology, University of California San Francisco

S1 Model parameter names
For aesthetic reasons, we refer to several model parameters in
the text with subscripted letters. These correspond the simula-
tion model parameters listed in table S1.

S2 Supplemental Movies
(removed to reduce file size)

Figure S1: In vitro symmetry breaking and motility for beads
uniformly coated with ActA

Figure S3: 3D view of simulation showing links colored by
tensile stress (color bar range represents zero to breakage
stress)

Figure S7: Ellipsoidal beads break symmetry sideways

Mark J Dayel

Mark J Dayel

FigS1_Data09_roi_frame_.mov
Media File (video/quicktime)

Mark J Dayel

Mark J Dayel

FigS3_Fig1vtkx1_small.mov
Media File (video/quicktime)

Mark J Dayel

Mark J Dayel

FigS7_Ellipsoid_vtk_.mov
Media File (video/quicktime)

Figure S2: Computer simulation of symmetry breaking and motility (2D projections convolved with Gaussian)

Figure S4: Shell deformations during symmetry breaking, (left) circumferential and (right) radial

FigS2_Fig1_x_proj.mov
Media File (video/quicktime)

Mark J Dayel

Mark J Dayel

FigS4a_circ_measure_vtk_.mov
Media File (video/quicktime)

Mark J Dayel

Mark J Dayel

FigS4b_radial_measure_vtk_.mov
Media File (video/quicktime)

Figure S5: Strain buildup and release by link breakage. Images show node tracks, link breaks and transverse forces. Graph on right
shows corresponding transverse and radial link force buildup and broken links as functions of distance from the surface of the bead.

Figure S6: Network deformations during smooth motion, (left) circumferential and (right) radial

FigS5_radial_report_force.mov
Media File (video/quicktime)

Mark J Dayel

Mark J Dayel

FigS6a_vtk_smooth_circ_trimmed.mov
Media File (video/quicktime)

Mark J Dayel

Mark J Dayel

FigS6b_vtk_radial_trimmed.mov
Media File (video/quicktime)

Parameter in text Parameter in Model Description

PXL P_XLINK Probability of forming crosslink
FL LINK_FORCE Spring constant for node-node links
FBL LINK_BREAKAGE_FORCE Force threshold above which node-node links break

Table S1: Corresponding simulation parameter names in the main text and in the code

S3 3D reconstructions of beads

(3D interactive model)

(3D interactive model)

(3D interactive model)

(3D interactive model)

Figure S8: 2D projections (left) and corresponding 3D reconstructions (right) of constrained beads (5µm spacers) showing smooth
opening of shell without bi-lobed structure

(3D interactive model)

(3D interactive model)

(3D interactive model)

(3D interactive model)

Figure S9: 2D projections (left) and corresponding 3D reconstructions (right) of unconstrained beads (15µm spacers) showing bi- and
tri-lobed structure

(3D interactive model)

(3D interactive model)

(3D interactive model)

Figure S10: 2D projections (left) and corresponding 3D reconstructions (right) of shells and tails from unconstrained elliptical beads
showing sideways symmetry breaking and motility

(3D interactive model)

(3D interactive model)

Figure S11: 3D reconstructions of in silico shells and tails from unconstrained elliptical beads showing linear crack and arc or
bi-lobed structure

(3D interactive model)

Figure S12: 3D view of in silico network trajectory relative to bead during smooth motion

S4 Model Robustness
To determine how the model behaviors depend on the parame-
ters, we took our default parameter set (section S7.2) and var-
ied each parameter one by one. Figures S13 to S22 show the ef-
fect of varying the parameters, with images on the left showing
timepoints during the run, and the corresponding bead veloci-
ties on the right (exact parameters are included in tiny writing
below the left images). Some of the runs are cut short for some
values of particular parameters (e.g. figure S16 when high
LINK_BREAKAGE_FORCE) because the run essentially stalls.

Overall motility and pulsatile motion are extremely ro-
bust, but the smoothness of motion is fragile—changing many
of the parameters will cause a transition to pulsatile motion.

Note, the automated algorithm for determining the sym-
metry break axis occasionally fails and projects the data or-
thogonal to the symmetry breaking axis (e.g. figure S22
FORCE_SCALE_FACT=0.536, in this case it is because the
algorithm has picked up the axis from the second shell break
at frame 200).

Some particularly interesting points to note:

S4.1 Increasing Radius produces pulsatile mo-
tion

Figure S13 shows that increasing the bead radius causes a tran-
sition from smooth to pulsatile motion, mimicking that seen in
experiments (Bernheim-Groswasser et al. 2002). This run was
performed with constant nucleator inertia (i.e. specifically not
varying the inertia as a function of radius) to demonstrate that
this transition is due to an effect of the radius of the bead on
the network. At smaller bead radii, two things operate: First
there the curvature is higher, so the network expansion is effec-
tively faster (Bernheim-Groswasser et al. 2002), and secondly
the ratio bead size to the network mesh size is smaller. This
means that it is harder for tension to build up around the bead
(through the effective mesh size of the network) because the
bead can effectively go through the mesh. Another way to look
at this is as analogous to reducing the probability of crosslink-
ing P_XLINK. This produces smooth motion by increasing the
effective mesh size when there are fewer links (few links, loose
connections, larger effective mesh size) and the bead can move
smoothly through the mesh. Reducing the radius does the same
thing—the mesh size is the same, but now the smaller bead can
move through it. Effective meshwork size is hard to control
here, so it is difficult to tease out the relative contributions of
these two factors on the transition to smooth motion for smaller
beads.

S4.2 Shell thickness
The shell is relatively constant thickness for all parameters
except for LINK_FORCE, i.e. the spring constant of the net-
work (figure S17). When the spring constant is low, the net-
work stretches a lot before offering a significant restoring force.
Since this (circumferential) stretching is the cause of the sym-
metry break, decreasing the spring constant increases the thick-
ness of the shell.

S4.3 Shell Flatness
Varying LINK_BREAKAGE_FORCE changes the force required
to break links of the network. Figure S16 shows that for
very low LINK_BREAKAGE_FORCE the network is incoherent,
similar to the network with very few links (c.f. low val-
ues of P_XLINK). Unlike varying P_XLINK, high values of
LINK_BREAKAGE_FORCE produce a very flat shell after sym-
metry breaking (looking at these results in 3D show the shell
indeed to be planar). This supports the model of symmetry
breaking: when the LINK_BREAKAGE_FORCE is very high, no
outer shell links break except when the shell rips right through
in the catastrophic symmetry break rip. When the shell relaxes,
since no links broke in the outer shell, the equilibrium area of
this outer shell is still exactly the same as the inner shell, so the
shell relaxes to a flat plane.

S4.4 Pulsatile motion with no bead-network
friction

Figure S23 demonstrates that increasing P_XLINK in the ab-
sence of any bead-network friction still induces a transition
from smooth to pulsatile motion.

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S13: Effect of varying RADIUS

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S14: Effect of varying P_XLINK

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S15: Effect of varying P_NUC

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S16: Effect of varying LINK_BREAKAGE_FORCE

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S17: Effect of varying LINK_FORCE

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S18: Effect of varying NODE_REPULSIVE_MAG

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S19: Effect of varying NUC_LINK_FORCE

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S20: Effect of varying NUC_LINK_BREAKAGE_DIST

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S21: Effect of varying NUCLEATOR_INERTIA

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)
Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S22: Effect of varying FORCE_SCALE_FACT

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

0.0

1.0

 0 2000 4000 6000 8000 10000

V
el

oc
ity

 (
µm

/m
in

)

Time (s)

Figure S23: Effect of varying P_XLINK with no bead-network friction

Bead

Node
Node-Node Link
Node-Bead Link

x

FR FR

FL FL

FA FA

Repulsion

Link

Bead Attachment

Force

Inverse Square

Linear (Hookean Spring)

Linear (Hookean Spring)

Functional Form

Figure S24: Diagram of network and functional forms of the
forces

S5 Outline of the Model
The comet program is a Monte-Carlo/Lagrangian model that
calculates the 3 dimensional positions of a large number of
‘nodes’ representing material in an actin network (diagrammed
in figure S24 and an example shown in figure S25). For each
timestep DELTA_T, nodes move a displacement proportional to
the force acting upon them. There is no inertia, since this is a
low Reynolds number regime. The forces acting on each node
are as follows:

• Repulsive forces between nodes

• Link forces between nodes

• Link forces between node and nucleator

The nucleator object is treated as incompressible i.e. if
during an iteration a node enters the nucleator, then in the next
iteration it is simply moved out of the nucleator along a normal
to the nucleator surface.

Nodes are nucleated at a constant rate, proportional to
P_NUC, at the nucleator surface. To allow it to find an equi-
librium position before being crosslinked into the network, a
new node has its harbinger flag set when created, it expe-
riences only repulsive forces for CROSSLINKDELAY iterations.
Crosslinks are then formed as follows: All nodes with within
XLINK_NODE_RANGE are counted, and links are either formed

Figure S25: Cross-section of network showing links around
bead (bead removed for clarity)

in random order, or if XLINK_NEAREST nearest first, until the
number of crosslinks reaches MAX_LINKS_PER_NODE. Once a
link is formed, its original distance is stored and used to cal-
culate link forces. If the link is stretched or compressed away
from its original length it behaves as a Hooke’s Law spring and
excerts a force proportional to, and opposing, the displacment.
The scale multiple for this force is LINK_FORCE. This is to
simulate an actin filament acting as an entropic spring by flex-
ing motions. If the link force exceeds LINK_BREAKAGE_FORCE
then the link breaks.

The nucleator is allowed to move and rotate, subject to
displacement and torque vectors from the summed node repul-
sion from the nucleator, and the nucleator-node link forces. A
full treatment of nucleator inertia is beyond the scope of the
current model, and drag is simply scaled by a supplied pa-
rameter NUCLEATOR_INERTIA multiplied by the node inertia,
and similarly the nucleator moment of inertia is scaled by the
supplied parameter MofI. As a first approximation of how this
should change with nucleator size, we scale the inertia and mo-
ment of inertia by the radius (or radius and length for long axes
of the ellipsoids and capsules) if the VARY_INERT_W_RAD pa-
rameter is set. Given that this is not drag through a Newtonian
fluid, but largely a product of complex fluid and network drag
forces, this may not be very accurate. On the other hand fig-
ure S21 shows that the behavior is not very sensitive to the
NUCLEATOR_INERTIA parameter anyway.

Output files are saved as jpgs for the x,y and z projec-
tions (convolved with a gaussian to make it look like a mi-
croscope image). Post processing routines can produce 3D
rendering jpgs, or interactive 3D renderings on-screen. Also,
post-processing 3D rendering of a single image will trigger the
program to also write a vrml file to allow the 3D view to be
imported into other software (e.g. Acrobat 3D etc.). Note: the
program calls the Imagemagick convert program to add text
to the images and save as jpgs and calls bzip2 to compress the
data files.

S6 Installing the program
The code is open source and available for
download via svn (temporarily housed at
https://kinglab.berkeley.edu/svn/comet/model/comet/src/).
We provide a precompiled binary for Mac OS X
http://kinglab.berkeley.edu/public/mark/ (user-
name:reviewers password:cometprogram), and instructions
for compiling from source for OS X, Linux and Windows.
The program requires that ImageMagick be installed for
writing images (we recommenced using macports to install
ImageMagick on OS X, and cygwin to install ImageMagick
on windows.), and bzip2 is required to compress the data
files.

S6.1 Compiling from source
The code has two optional dependencies, the Gnu Scientific
Library (GSL) which provides the Mersenne Twister random
number generator (more statistically valid than the standard
rand() function), and The Visualization Toolkit (VTK) which
provides the 3D visualization routines. If these libraries are
not available, you can compile without them by changing
the #define’s USE_GSL_RANDOM and LINK_VTK in the file
stdafx.h from 1 to 0 respectively.

S6.1.1 OS X

First install the Apple Developer Tools, then open the Xcode
project file supplied. Include the GSL and VTK libraries in the
search path, or disable before compiling (see above).

S6.1.2 Linux

A makefile is included for compilation with GNU Make. This
should be edited to point to the GSL and VTK libraries, or
disable them before compiling (see above).

S6.1.3 Windows

First install cygwin, then use cygwin to install ImageMagick,
bzip2 and gcc, then compile as for Linux.

S7 Running the program

S7.1 Command line syntax
The program expects to be run from a new directory contain-
ing a copy of the control file cometparams.ini, an example
of which is included in the source code and explained in de-
tail below. Typing ‘comet’ without any parameters returns the
command line syntax:

For a new simulation setup the parameter
file ’cometparams.ini’ in current directory and type:
comet <numThreads> where <numThreads> is the number
of CPUs to use e.g. typing ‘comet 4’ will start a new run
using 4 simultaneous threads and parameters read from the
cometparams.ini control file.

To process an existing dataset type:
comet <command> <frame range> where <command>
is ’post’ to write bitmap images, ’vtk’ to write 3D images or
’view’ to enter 3D interactive mode. e.g comet post 1:300
writes bitmaps for frame 1–300, comet view 300:300
enters 3D interactive mode for frame 300 (the range ’0:0’ can
be used to process all frames).

S7.2 The cometparams.ini parameter control
file

Here are the core settings in the cometparams.ini file (ex-
plained below):

Run time
DELTA_T 0.01
TOTAL_SIMULATION_TIME 5600.0
TOT_FRAMES 700

Nucleator
SHAPE SPHERE
ELLIPSOID_STRETCHFACTOR 1.5
RADIUS 2.5
CAPSULE_HALF_LINEAR 2.75

Nucleator attachments
STICK_TO_NUCLEATOR true
RESTICK_TO_NUCLEATOR true
NUC_LINK_FORCE 2.0
NUC_LINK_BREAKAGE_DIST .237

Node repulsion function
NODE_REPULSIVE_RANGE 1.0
NODE_REPULSIVE_MAG 2.7
NODE_REPULSIVE_POWER 2.0

Node links
P_NUC 0.12
XLINK_NODE_RANGE 1.0
MAX_LINKS_PER_NEW_NODE 10
LINK_BREAKAGE_FORCE 3.0
LINK_FORCE 3.0
P_XLINK .700
VARY_P_XLINK true

Drag
FORCE_SCALE_FACT 0.3
NUCLEATOR_INERTIA 80
MofI 0.5
VARY_INERT_W_RAD false

S7.2.1 Run Time

TOTAL_SIMULATION_TIME defines the run length in simula-
tion time (uncalibrated, nominally seconds). DELTA_T de-
fines the time step between iterations, i.e. for the given
TOTAL_SIMULATION_TIME of 5600 and DELTA_T of 0.01,
there will be a total of 560000 iterations. TOT_FRAMES defines

http://macports.org
http://cygwin.org
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://vtk.org
http://developer.apple.com/tools/
http://cygwin.org

the number of snapshots to be taken during the run, i.e. 700
snapshots would mean one snapshot every 800 iterations.

S7.2.2 Nucleator

SHAPE can be SPHERE, CAPSULE or ELLIPSOID. For SPHERE,
only the RADIUS matters. For CAPSULE, RADIUS and
CAPSULE_HALF_LINEAR are used, and for ELLIPSOID,
RADIUS and ELLIPSOID_STRETCHFACTOR define the shape.
(Arbitrary shapes can be defined in the code, given a function
that for a supplied point, returns a vector normal to the nearest
point on the surface to the given point.)

S7.2.3 Nucleator attachments

When nodes are created, STICK_TO_NUCLEATOR defines
whether they stick to their point of creation on the
nucleator surface. Stuck nodes exert a force propor-
tional to NUC_LINK_FORCE multiplied by the distance from
the surface stuck point until they are extended beyond
NUC_LINK_BREAKAGE_DIST when the link breaks. If
RESTICK_TO_NUCLEATOR is true, unstuck nodes will re-stick
if they come into contact with the surface again.

S7.2.4 Node repulsion function

The repulsion force between nodes is of the form:

FR = MR

(dR

d

)PR

− 1
 , 0 < d < dR

where d is the distance between nodes, MR

(NODE_REPULSIVE_MAG) is a magnitude scale factor, and
dR (NODE_REPULSIVE_MAG) is maximum range of the repul-
sive force. The power factor PR (NODE_REPULSIVE_POWER)
is 2, so this is a simple inverse square repulsive force and is
plotted in figure S26.

S7.2.5 Node links

P_NUC defines the rate of nucleation of new nodes per
unit area per unit time. i.e. for one iteration, the num-
ber of new nodes added over the whole of the nucle-
ator surface is P_NUC * DELTA_T * surf_area, where
surf_area is in µm2. The nodes are added at random po-
sitions on the surface, with an even distribution unless the
ASYMMETRIC_NUCLEATION variable is set.

New nodes are crosslinked to nearby nodes within
XLINK_NODE_RANGE. The links then behave as Hookean
springs, exerting a restoring force

FL = −ML

(
d − dL

dL

)
where d is the distance between nodes, ML is a magnitude scale
factor, and dL is the original length of the link when it was
formed (figure S25). If the link is extended so that its force
goes beyond a certain limit, the link breaks. (optionally this
can be strain rather than stress, i.e. a break occurs when d

dL

exceeds a certain limit rather than when d−dL
dL

does)

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

20

Distance (um)

Fo
rc

e
(fo

rc
e

un
its

)

Repulsive Force

Figure S26: Repulsive force function

Nodes are added to the surface and fixed there
while their repulsive forces are ramped up linearly from 0
to full. This allows time for nodes already at the sur-
face move and make room for the new node before it is
crosslinked. The ramp-up occurs over CROSSLINKDELAY it-
erations. MAX_LINKS_PER_NEW_NODE limits the maximum
number of crosslinks for each new node. LINK_FORCE is
the spring constant, and when the extension forces reaches
LINK_BREAKAGE_FORCE, the link breaks. P_XLINK is the
probability of forming a crosslink to a node within range
(still restricted by the MAX_LINKS_PER_NEW_NODE limit). The
VARY_P_XLINK flag (normally on) also imposes a linear tail-
off of this probability with distance. (see section S5 for more
info).

S7.2.6 Drag

This section relates the forces to the actual movement of the
nodes and nucleator. FORCE_SCALE_FACT scales the move-
ment of nodes (i.e. effectively inverse of node drag). If you
reduce this, you probably need to reduce DELTA_T as well.
NUCLEATOR_INERTIA determines how hard it is to displace
the nucleator and MofI determines how hard it is to rotate it. If
VARY_INERT_W_RAD is set, inertia will be scaled by the size of
the nucleator (see section S5 for more info).

S8 Implementation in C++
The code it’s written in C++ for speed. We attempt to use
an somewhat object-based approach, but a good many of the
member variables are declared as static global to allow their
access across threads.

Here is a breakdown of the main classes and functions
in the program. There are numerous other functions but this is
the core of the program:

• Main()

– Spawns threads: collisiondetectionthread,
linkforcesthread and applyforcesthread
depending on the USETHREAD_COLLISION,
USETHREAD_LINKFORCES and
USETHREAD_APPLYFORCES parameters.

– Parses the comet_params.ini file to read parame-
ters. All of the parameters are implemented as glob-
als (should fix at some point)

– Creates the main theactin and nuc_object ob-
jects.

– Runs through the main iteration loop, calling
theactin.iterate() and saving snapshots every
so often.

• Actin class

– There is only one actin object, theactin, which
constitutes the network, i.e. contains the nodes and
the functions that deal with them.

– The iterate() function does one iteration pass,
calling:

* nucleator_node_interactions() dis-
places any nodes out of the nucleator object
along a normal to the nucleator surface

* nucleate() adds new harbinger nodes to the
surface of the nucleator

* crosslinknewnodes() crosslinks harbingers
once they are ready

* sortnodesbygridpoint() orders nodes by
gridpoint. The only reason for this is for the
division of labor when using threads: We do
repulsion by gridpoint to save re-calculating
nearby nodes if there are multiple nodes on one
gridpoint, and we do not want to divide nodes
on one gridpoint across multiple threads.

* collisiondetection() detects whether
nodes are within NODE_REPULSIVE_RANGE of
one another and adds the repulsive force to
rep_force_vec[].

* linkforces() Calculates the forces be-
tween nodes due to links and puts into
link_force_vec[]. If a link goes above
a certain threshold force, marks it as broken
and removes next time (again to prevent thread
problems—since a link is removed both ways
and we can’t guarantee that both nodes are be-
ing processed by same thread)

* applyforces() updates the positions of all
the nodes. Sums over the threads for
rep_force_vec[], link_force_vec[] and
repulsion_displacement_vec[].

– Numerous other functions for things like saving
bmps, vrml etc.

• Nucleator class

– There is only one nucleator object at the moment,
nuc_object, which is closely linked to the actin
object

– The nucleator is either a sphere, a capsule (i.e. a
sphere with a cylindrical segment stuck in the mid-
dle) or ellipsoid

– addnodes() adds harbingers to the surface of the
nucleator. The probablility of addition of nodes
is normalized by surface area and is symmetric if
ASYMMETRIC_NUCLEATION is zero, or asymmetric
if 1 or 2 (stepped or linear bias)

– definenucleatorgrid() sets a list of gridpoints
to check in case of nodes entering the nucleator.
Called once at the beginning.

– iswithinnucleator() returns true if the node is
within the nucleator

– collision() moves a node out of the nucleator
along a normal vector

• Nodes class

– Nodes exist only as members of the actin object

– nodegrid is a 3 dimensional C++ vector of node
pointers. Each nodegrid entry starts a circularly
linked list of nodes representing the nodes within
that gridpoint voxel.

– The actin class contains a vector of nodes.
Each node has an associated nodenum, x y
and z position, nextnode and prevnode
node pointers for the nodegrid linked list,
rep_force_vec[], link_force_vec[] and
repulsion_displacement_vec[] as described
above, the grid position of the node, harbinger
and polymer flags and a listoflinks i.e. a vector
of link object which attach this node to other nodes.

– polymerize() Creates a node as a harbinger. Adds
its pointer to the gridpoint linked list.

– depolymerize() Removes a node, deletes all links
and removes from grid.

– setgridcoords() Calculates new grid co-
ordinates based on x,y,z position

– addtogrid() adds the node to the current gridpoint

– removefromgrid() removes node from the grid

– updategrid() checks to see if node has moved
gridpoints, and updates grid is needs to

– removelink() removes the specified node from the
list of links

• Links class

– Links exist only as members of the node objects

– Each link has an associated linkednodeptr
which points to the target node that the link
is to and a broken flag which is read by
actin::linkforces() and tells it to delete the
link if it broke.

– orig_dist and orig_distsqr store the original
distance of the link (and the square of that in a mis-
guided attempt to avoid taking square roots.)

– breakcount stores the number of consecu-
tive iterations the link force has been above
LINK_BREAKAGE_FORCE and is used to increase the
probability of breakage

– getlinkforces() returns the force acting on the
link. Also sets the broken flag and increments
breakcount if appropriate

S9 Relation of the model assumptions
to theories of and data on actin dy-
namics

Our model is mesoscopic and does not
consider the detailed microscopic
mechanisms of force generation by actin
filaments growing against a curved
surface. We simply use the theories
(reviewed in (Mogilner 2006)) supported
by the data (Kovar and Pollard 2004;
Footer, Kerssemakers et al. 2007)
suggesting that individual filaments can
grow against pN-range forces. Despite
the fact that we do not consider
respective pushing forces at the surface
explicitly, their existence is crucial,
because they maintain the active
outward pushing stress at the inner
boundary of the shell generating the
passive viscoelastic radial and transverse
stresses within the shell. The
justification for not considering the
pushing forces explicitly is as follows.

Three regimes of actin filament growth
at the bead or Listeria surface are
possible: diffusion limited (Plastino,
Lelidis et al. 2004), stress limited (van
der Gucht, Paluch et al. 2005), and
polymerization limited. In the first case,
the dense actin gel hinders diffusion of
the G-actin to the surface where the
polymerization takes place, and the
filament growth slows down. In the
second case, the radial compression of
the expanding actin shell stalls the
filament growth. The diffusion-limited
regime, however, is only the case when
the mesh size of the actin network is
small enough (of the order of 30 nm or
less (Mogilner and Edelstein-Keshet
2002)). In our case, estimates of the data
(Akin and Mullins 2008) suggest that the
actin gel mesh size is greater, ~ 0.1
µm. In this case, and when the radius of
the actin shell is of the order of the

bead’s radius, the radial stress at the
beads surface , where is the
Young modulus of the actin gel
(Sekimoto, Prost et al. 2004). The
Young modulus can be estimated

roughly as (MacKintosh, Kas

et al. 1995), where
is the thermal energy, and is
the actin filament’s persistence length.
For ~ 0.1 µm, ,
and the force per filament is of the order
of , well below the
estimated stall force (reviewed in
(Mogilner 2006)).

These estimates suggest that we can
assume simply that the actin growth at
the surface is equal to a constant
polymerization rate. The growing
filaments, of course, also produce force,
which is not constant: this force balances
the growing radial shell compression,
but it does not slow down the growth
significantly. Mathematically, this
assumption translates into the constant
rate with which the nascent network
nodes are deposited at the random
locations at the surface. Following the
observations, we assume that the
polymerization takes place only at the
surface, and that there is no appreciable
depolymerization of actin.

The assumption that the nascent nodes
are attached to the surface by elastic
springs and that these springs break at
characteristic yield strain is equivalent,
when averaged, to an effective viscous
drag (Tawada and Sekimoto, 1991). The
fact that the transient attachments of the
actin filaments do produce such
resistance to propulsion is established
(Bernheim-Groswasser, Wiesner et al.
2002; Trichet, Campas et al. 2007).

Modeling of the actin gels with nodes
connected by elastic springs is well
established (Bottino and Fauci 1998;
Shafrir and Forgacs 2002). In our model,
many elastic links between the
neighboring nodes oriented in random
directions correspond to the isotropic
elasticity of the actin gel. This is the
simplest case; there are no indications of
mechanical anisotropy of the Arp2/3-
mediated actin gels. At small
deformations, the in silico gel exhibits
linear elasticity; existing estimates (Boal
2001) demonstrate that the mechanical
properties of such gel are robust with
respect to the exact orientation, number
and lengths of the spring-like
connections between the nodes. The
dimensional magnitude of the Young
modulus of our in silico gel, which in
principle is the parameter sensitive to the
springs’ lengths, is not important for the
model behavior, because we assume that
the filaments’ growth is force-
independent, and that the gel breaking is
strain-limited, rather than stress-limited.

We introduced the non-linearity to the
springs’ behavior to account for the
observations that, depending on the
system, the gel exhibits either stress-
softening, or stress-stiffening (Boal
2001; Gardel, Shin et al. 2004; Gardel,
Nakamura et al. 2006) behavior. The
viscoelastic properties of the actin gels
were measured (Bausch, Moller et al.
1999; Park, Koch et al. 2005; Rogers,
Waigh et al. 2008). In our model, the
elastic behavior arises from small
deformations of the elastic springs, while
the viscous behavior ensues when a
characteristic yield strain is exceeded,
the springs ‘snap’, and the respective
nodes start ‘flowing’ relative to each
other. This behavior corresponds

indirectly to Kelvin model of
viscoelastic materials (Bird, Armstrong
et al. 1977). The yield-strain-limiting
behavior of the actin gel was detected
many times, recently in (Gardel,
Nakamura et al. 2006). It corresponds
most likely not to breaking of individual
filaments (Tsuda, Yasutake et al. 1996)
or proteins connecting the filaments
(Fujiwara, Suetsugu et al. 2002), which
would be stress-limiting and occur at
greater forces, but to disentanglement of
stretching filament arrays, which is a
geometric phenomenon and therefore is
strain-limiting.

Supplemental Material References

Akin, O. and R. D. Mullins (2008).
"Capping protein increases the
rate of actin-based motility by
promoting filament nucleation by
the Arp2/3 complex." Cell
133(5): 841-51.

Bausch, A. R., W. Moller, et al. (1999).
"Measurement of local
viscoelasticity and forces in
living cells by magnetic
tweezers." Biophys J 76(1 Pt 1):
573-9.

Bernheim-Groswasser, A., S. Wiesner,
et al. (2002). "The dynamics of
actin-based motility depend on
surface parameters." Nature
417(6886): 308-11.

Bird, R. B., R. C. Armstrong, et al.
(1977). Dynamics of polymeric
liquids. New York ; London,
Wiley.

Boal, D. H. (2001). Mechanics of the
cell. Cambridge, Cambridge
University Press.

Bottino, D. C. and L. J. Fauci (1998). "A
computational model of ameboid

deformation and locomotion."
Eur Biophys J 27(5): 532-9.

Footer, M. J., J. W. Kerssemakers, et al.
(2007). "Direct measurement of
force generation by actin
filament polymerization using an
optical trap." Proc Natl Acad Sci
U S A 104(7): 2181-6.

Fujiwara, I., S. Suetsugu, et al. (2002).
"Visualization and force
measurement of branching by
Arp2/3 complex and N-WASP in
actin filament." Biochem
Biophys Res Commun 293(5):
1550-5.

Gardel, M. L., F. Nakamura, et al.
(2006). "Stress-dependent
elasticity of composite actin
networks as a model for cell
behavior." Phys Rev Lett 96(8):
088102.

Gardel, M. L., J. H. Shin, et al. (2004).
"Elastic behavior of cross-linked
and bundled actin networks."
Science 304(5675): 1301-5.

Kovar, D. R. and T. D. Pollard (2004).
"Insertional assembly of actin
filament barbed ends in
association with formins
produces piconewton forces."
Proc Natl Acad Sci U S A
101(41): 14725-30.

MacKintosh, F. C., J. Kas, et al. (1995).
"Elasticity of semiflexible
biopolymer networks." Phys Rev
Lett 75(24): 4425-4428.

Mogilner, A. (2006). "On the edge:
modeling protrusion." Curr Opin
Cell Biol 18(1): 32-9.

Mogilner, A. and L. Edelstein-Keshet
(2002). "Regulation of actin
dynamics in rapidly moving
cells: a quantitative analysis."
Biophys J 83(3): 1237-58.

Park, S., D. Koch, et al. (2005). "Cell
motility and local viscoelasticity

of fibroblasts." Biophys J 89(6):
4330-42.

Plastino, J., I. Lelidis, et al. (2004). "The
effect of diffusion,
depolymerization and nucleation
promoting factors on actin gel
growth." Eur Biophys J 33(4):
310-20.

Rogers, S. S., T. A. Waigh, et al. (2008).
"Intracellular microrheology of
motile Amoeba proteus."
Biophys J 94(8): 3313-22.

Sekimoto, K., J. Prost, et al. (2004).
"Role of tensile stress in actin
gels and a symmetry-breaking
instability." Eur Phys J E Soft
Matter 13(3): 247-59.

Shafrir, Y. and G. Forgacs (2002).
"Mechanotransduction through
the cytoskeleton." Am J Physiol
Cell Physiol 282(3): C479-86.

Trichet, L., O. Campas, et al. (2007).
"VASP governs actin dynamics
by modulating filament
anchoring." Biophys J 92(3):
1081-9.

Tsuda, Y., H. Yasutake, et al. (1996).
"Torsional rigidity of single actin
filaments and actin-actin bond
breaking force under torsion
measured directly by in vitro
micromanipulation." Proc Natl
Acad Sci U S A 93(23): 12937-
42.

van der Gucht, J., E. Paluch, et al. (2005).
"Stress release drives symmetry
breaking for actin-based
movement." Proc Natl Acad Sci
U S A 102(22): 7847-52.

	S1 Model parameter names
	S2 Supplemental Movies
	S3 3D reconstructions of beads
	S4 Model Robustness
	S4.1 Increasing Radius produces pulsatile motion
	S4.2 Shell thickness
	S4.3 Shell Flatness
	S4.4 Pulsatile motion with no bead-network friction

	S5 Outline of the Model
	S6 Installing the program
	S6.1 Compiling from source

	S7 Running the program
	S7.1 Command line syntax
	S7.2 The cometparams.ini parameter control file

	S8 Implementation in C++
	S9 Relation of the model assumptions to theories of and data on actin dynamics

